3.1.4 \(\int \sqrt {e \cot (c+d x)} (a+a \cot (c+d x)) \, dx\) [4]

3.1.4.1 Optimal result
3.1.4.2 Mathematica [C] (verified)
3.1.4.3 Rubi [A] (verified)
3.1.4.4 Maple [B] (verified)
3.1.4.5 Fricas [A] (verification not implemented)
3.1.4.6 Sympy [F]
3.1.4.7 Maxima [F(-2)]
3.1.4.8 Giac [F]
3.1.4.9 Mupad [B] (verification not implemented)

3.1.4.1 Optimal result

Integrand size = 23, antiderivative size = 71 \[ \int \sqrt {e \cot (c+d x)} (a+a \cot (c+d x)) \, dx=\frac {\sqrt {2} a \sqrt {e} \text {arctanh}\left (\frac {\sqrt {e}+\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{d}-\frac {2 a \sqrt {e \cot (c+d x)}}{d} \]

output
a*arctanh(1/2*(e^(1/2)+cot(d*x+c)*e^(1/2))*2^(1/2)/(e*cot(d*x+c))^(1/2))*2 
^(1/2)*e^(1/2)/d-2*a*(e*cot(d*x+c))^(1/2)/d
 
3.1.4.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.33 (sec) , antiderivative size = 154, normalized size of antiderivative = 2.17 \[ \int \sqrt {e \cot (c+d x)} (a+a \cot (c+d x)) \, dx=-\frac {a \sqrt {e \cot (c+d x)} \left (8 \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},1,\frac {3}{4},-\tan ^2(c+d x)\right )+\sqrt {2} \left (2 \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-2 \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )+\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )\right ) \sqrt {\tan (c+d x)}\right )}{4 d} \]

input
Integrate[Sqrt[e*Cot[c + d*x]]*(a + a*Cot[c + d*x]),x]
 
output
-1/4*(a*Sqrt[e*Cot[c + d*x]]*(8*Hypergeometric2F1[-1/4, 1, 3/4, -Tan[c + d 
*x]^2] + Sqrt[2]*(2*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - 2*ArcTan[1 + 
Sqrt[2]*Sqrt[Tan[c + d*x]]] + Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + 
 d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])*Sqrt[Tan[c + 
d*x]]))/d
 
3.1.4.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 4011, 3042, 4015, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a \cot (c+d x)+a) \sqrt {e \cot (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right ) \sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4011

\(\displaystyle \int \frac {a e \cot (c+d x)-a e}{\sqrt {e \cot (c+d x)}}dx-\frac {2 a \sqrt {e \cot (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {-a e-a \tan \left (c+d x+\frac {\pi }{2}\right ) e}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 a \sqrt {e \cot (c+d x)}}{d}\)

\(\Big \downarrow \) 4015

\(\displaystyle -\frac {2 a^2 e^2 \int \frac {1}{2 a^2 e^2-(a e+a \cot (c+d x) e)^2 \tan (c+d x)}d\left (-\frac {a e+a \cot (c+d x) e}{\sqrt {e \cot (c+d x)}}\right )}{d}-\frac {2 a \sqrt {e \cot (c+d x)}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\sqrt {2} a \sqrt {e} \text {arctanh}\left (\frac {a e \cot (c+d x)+a e}{\sqrt {2} a \sqrt {e} \sqrt {e \cot (c+d x)}}\right )}{d}-\frac {2 a \sqrt {e \cot (c+d x)}}{d}\)

input
Int[Sqrt[e*Cot[c + d*x]]*(a + a*Cot[c + d*x]),x]
 
output
(Sqrt[2]*a*Sqrt[e]*ArcTanh[(a*e + a*e*Cot[c + d*x])/(Sqrt[2]*a*Sqrt[e]*Sqr 
t[e*Cot[c + d*x]])])/d - (2*a*Sqrt[e*Cot[c + d*x]])/d
 

3.1.4.3.1 Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4011
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Int 
[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 
 0] && GtQ[m, 0]
 

rule 4015
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[-2*(d^2/f)   Subst[Int[1/(2*c*d + b*x^2), x], x, (c 
- d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && 
 EqQ[c^2 - d^2, 0]
 
3.1.4.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(286\) vs. \(2(58)=116\).

Time = 0.05 (sec) , antiderivative size = 287, normalized size of antiderivative = 4.04

method result size
parts \(-\frac {a e \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d \left (e^{2}\right )^{\frac {1}{4}}}+\frac {a \left (-2 \sqrt {e \cot \left (d x +c \right )}+\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4}\right )}{d}\) \(287\)
derivativedivides \(-\frac {a \left (2 \sqrt {e \cot \left (d x +c \right )}-2 e \left (\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}-\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}\right )\right )}{d}\) \(289\)
default \(-\frac {a \left (2 \sqrt {e \cot \left (d x +c \right )}-2 e \left (\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}-\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}\right )\right )}{d}\) \(289\)

input
int((e*cot(d*x+c))^(1/2)*(a+a*cot(d*x+c)),x,method=_RETURNVERBOSE)
 
output
-1/4*a/d*e/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c) 
)^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2 
)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+ 
1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))+a/d*(-2*(e*cot(d 
*x+c))^(1/2)+1/4*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot( 
d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c) 
)^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^ 
(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)))
 
3.1.4.5 Fricas [A] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 119 vs. \(2 (58) = 116\).

Time = 0.27 (sec) , antiderivative size = 236, normalized size of antiderivative = 3.32 \[ \int \sqrt {e \cot (c+d x)} (a+a \cot (c+d x)) \, dx=\left [\frac {\sqrt {2} a \sqrt {e} \log \left (-\sqrt {2} \sqrt {e} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} {\left (\cos \left (2 \, d x + 2 \, c\right ) - \sin \left (2 \, d x + 2 \, c\right ) - 1\right )} + 2 \, e \sin \left (2 \, d x + 2 \, c\right ) + e\right ) - 4 \, a \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{2 \, d}, -\frac {\sqrt {2} a \sqrt {-e} \arctan \left (\frac {\sqrt {2} \sqrt {-e} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} {\left (\cos \left (2 \, d x + 2 \, c\right ) + \sin \left (2 \, d x + 2 \, c\right ) + 1\right )}}{2 \, {\left (e \cos \left (2 \, d x + 2 \, c\right ) + e\right )}}\right ) + 2 \, a \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{d}\right ] \]

input
integrate((e*cot(d*x+c))^(1/2)*(a+a*cot(d*x+c)),x, algorithm="fricas")
 
output
[1/2*(sqrt(2)*a*sqrt(e)*log(-sqrt(2)*sqrt(e)*sqrt((e*cos(2*d*x + 2*c) + e) 
/sin(2*d*x + 2*c))*(cos(2*d*x + 2*c) - sin(2*d*x + 2*c) - 1) + 2*e*sin(2*d 
*x + 2*c) + e) - 4*a*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)))/d, - 
(sqrt(2)*a*sqrt(-e)*arctan(1/2*sqrt(2)*sqrt(-e)*sqrt((e*cos(2*d*x + 2*c) + 
 e)/sin(2*d*x + 2*c))*(cos(2*d*x + 2*c) + sin(2*d*x + 2*c) + 1)/(e*cos(2*d 
*x + 2*c) + e)) + 2*a*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)))/d]
 
3.1.4.6 Sympy [F]

\[ \int \sqrt {e \cot (c+d x)} (a+a \cot (c+d x)) \, dx=a \left (\int \sqrt {e \cot {\left (c + d x \right )}}\, dx + \int \sqrt {e \cot {\left (c + d x \right )}} \cot {\left (c + d x \right )}\, dx\right ) \]

input
integrate((e*cot(d*x+c))**(1/2)*(a+a*cot(d*x+c)),x)
 
output
a*(Integral(sqrt(e*cot(c + d*x)), x) + Integral(sqrt(e*cot(c + d*x))*cot(c 
 + d*x), x))
 
3.1.4.7 Maxima [F(-2)]

Exception generated. \[ \int \sqrt {e \cot (c+d x)} (a+a \cot (c+d x)) \, dx=\text {Exception raised: ValueError} \]

input
integrate((e*cot(d*x+c))^(1/2)*(a+a*cot(d*x+c)),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.1.4.8 Giac [F]

\[ \int \sqrt {e \cot (c+d x)} (a+a \cot (c+d x)) \, dx=\int { {\left (a \cot \left (d x + c\right ) + a\right )} \sqrt {e \cot \left (d x + c\right )} \,d x } \]

input
integrate((e*cot(d*x+c))^(1/2)*(a+a*cot(d*x+c)),x, algorithm="giac")
 
output
integrate((a*cot(d*x + c) + a)*sqrt(e*cot(d*x + c)), x)
 
3.1.4.9 Mupad [B] (verification not implemented)

Time = 13.28 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.80 \[ \int \sqrt {e \cot (c+d x)} (a+a \cot (c+d x)) \, dx=-\frac {2\,a\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{d}-\frac {{\left (-1\right )}^{1/4}\,a\,\sqrt {e}\,\left (\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )-\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\right )}{d}-\frac {{\left (-1\right )}^{1/4}\,a\,\sqrt {e}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d}-\frac {{\left (-1\right )}^{1/4}\,a\,\sqrt {e}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d} \]

input
int((e*cot(c + d*x))^(1/2)*(a + a*cot(c + d*x)),x)
 
output
- (2*a*(e*cot(c + d*x))^(1/2))/d - ((-1)^(1/4)*a*e^(1/2)*atan(((-1)^(1/4)* 
(e*cot(c + d*x))^(1/2))/e^(1/2))*1i)/d - ((-1)^(1/4)*a*e^(1/2)*atanh(((-1) 
^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*1i)/d - ((-1)^(1/4)*a*e^(1/2)*(ata 
n(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2)) - atanh(((-1)^(1/4)*(e*cot( 
c + d*x))^(1/2))/e^(1/2))))/d